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JISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION

By ArteUrR W. GoupsteEIN and MeveErR JERISON

SUMMARY

An exact solution of the problem of designing an airfoil with
a prescribed velocity distribution on the suction surface in a
given uniform flow of an incompressible perfect fluid is obtained
by replacing the boundary of the airfoil by vortices. By this
device, a method of solution is developed that is applicable both
to isolated airfoils and to airfoils in cascade. The conformal
transformation of the designed airfoil into a circle can then be
obtained and the velocity distribution at any angle of attack
computed. Numerical tllustrations of the method are given for
the airfoil in cascade.

INTRODUCTION

The problem of increasing the output per stage in axial-
flow compressors and turbines involves the use of high-
solidity (closely spaced blades) stages of highly cambered
blades. In addition, the velocity distribution must be care-
fully selected as a function of arc length along the airfoil
(blade section) boundary in order to avoid flow separation or
excessively high local velocities.

Several methods are available for obtaining an airfoil with
a prescribed velocity distribution. The methods that lead to
theorctically exact results are based on conformal-mapping
theory. (See references 1 and 2.) In reference 3, Mutterperl
extends the method of conformal mapping to solve the
problem of computing a cascade of airfoils with prescribed
velocity distribution but, for cascades with closely spaced or
highly cambered airfoils, this procedure becomes very cum-
bersome. Approximate solutions have been obtained by
placing singularities such as vortices, sources, and sinks in a
uniform stream. The shape of sections of airfoils in cascade
can also be computed by distributing such singularities
periodically throughout the region of the cascade, as described
by Ackeret (reference 4).

Because these vortex methods are not exact, a method
with the vortices on the boundaries of the cascade airfoils
was developed. This method gives a theoretically exact solu-
tion without the computation difficulties encountered in
conformal-mapping methods for highly cambered airfoils or
closely spaced cascades. Furthermore, for the same accuracy
in computing the airfoil shape, this vortex method requires
the computation of fewer points than the method of conformal
mapping because these points may be arbitrarily placed on
the airfoil. The method may be applied to isolated airfoils
and to airfoils in cascade. For the cascade, the inflow and
discharge velocities and a velocity distribution on the surface

821318—49

of an airfoil are given and the shape of the airfoil is deter-
mined. In some cases, the spacing of the blades is pre-
assigned, which places a condition on the assumed velocity
distribution. Once the airfoil shape has been evolved, the
velocity distribution may be computed for any angle of
attack by the method described in appendix A. The method
of this paper was developed at the NACA Cleveland labora-
tory during 1946.
THEORY

OUTLINE OF METHOD

In reference 5, it is demonstrated that the two-dimensional
potential flow about a body in a uniform stream can be
represented by substituting for the body a sheet of vortices
along its boundary. The vortex strength per arc length at
any point is equal to the magnitude of the velocity at that
point. A proof of this relation for the case of the cascade is
given in appendix B. The problem of finding a shape with
a prescribed velocity distribution when placed in a stream
can then be stated: Given a vortex distribution, to find a
contour which satisfies the condition that it will be a stream-
line in the flow field induced by the uniform flow and the
vortices distributed on the contour.

The procedure of finding the shape begins by choosing an
approximate shape and distributing the vortices on it. The
stream function of the flow induced by the vortices and the
uniform stream is computed at points on the boundary of
the assumed shape. If this stream function is constant, the
assumed shape is correct. Variations of the stream function
are a measure of the deviation of the assumed shape from
the correct one. These variations are used to distort the
original shape into a new shape whose stream function is
more nearly constant. The process is repeated until the
variations become negligible. In the process of shape adjust-
ment, the velocity is altered on the pressure surface.

DERIVATION OF EQUATIONS FOR THE STREAM FUNCTION

Isolated airfoil.—The, complex or reflected velocity
w’ (2) (which is the derivative of the complex potential func-
tion w(2)) induced at the point z=x-+iy by a vortex of
strength & located at z,=z,+1y, is

(A summary of the principal symbols used in this report is
given in appendix C.)
1
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The complex velocity w’(2) induced by a uniform stream
with complex velocity w,’ and a distribution of vortex
strength per unit length v(z,) along a curve with coordinates
2,, 18 :

’ o ! L v(20) ds,

W (= + 5y | L2 M
where ds, is the element of arc length along the curve. The
complex potential at the point z is the integral of w’(z) with
respect to z, namely

w(z)=zwu/.+§%f~/(zg) log (z—z,) ds, (2)

From reference 1 (notation modified),
v (2,) dso=w'(2,) dz,=dw(2,) =do(2,)+1 dy(z,)

where
o velocity potential, Rlw(z)]
¥ stream function, J{w(z)]

When equation (2) is applied to obtain the complex
potential function at any point z in the flow field, the in-
tegration must be carried out along the boundary of the
body. Because this curve is a streamline, d¢=0 and, there-
fore, equation (2) becomes

()= 2w, 5 j log (z— 2,) de(z,) 20)

The imaginary part of equation (2a) is the stream function
at the point z,

¢=_xV!/+y1/z—%r f log v(z—w,)*+ (Y—yo)?de(z,) (3)

where '
V, y-component of uniform stream velocity V
V, a-component of uniform stream velocity V

It is convenient to use the a.‘f-c length along the airfoil as
a parameter. If (z,%) is a point on the airfoil boundary, then
s will denote the arc length there; similarly, s, will denote
the arc length at (1, ¥,). The vortex at s, on the airfoil

influences the stream function at the point s on the airfoil.
The stream function induced at (x,y) by a vortex of unit
strength at (v,, ¥,) is

e, 20) = 4= log (2= 2%+ (y—y.)" (4)

A plot in the (z,y) plane of curves for a constant fi(z,z,)
consists of concentric circles with center at (z,, ¥,)-

The velocity at the point s, on the airfoil is the directional
derivative ¢’(s,) of the potential along the streamline.
If the velocity along the airfoil has been specified and an
airfoil shape has been assumed, the resultant stream func-
tion along the boundary of the airfoil can be approximated
by using the approximate shape in evaluating the integral

Z-
) = () — f (s, 50) ' (52) dsa ()

where

¥, (s)stream function at (z,y) due to uniform stream, —xV,+yV’;
I total arc length of airfoil

All variables are expressed in terms of the are-length para-
meters s and s,. The integral in equation {5) can be evalu-
ated either numerically or graphically over the entire range
of integration except in the region where a (=s—s,) is small,
for in this region 7,(s,s,) becomes infinite. This portion of
the integral can be evaluated by approximating the airfoil
boundary by a line segment. Then,

1
S1(s, 80) ~Ir log (s—s,)*

The prescribed velocity can be given in this region, which
may be defined by s—a=s,=s+a, by a Taylor’s series as
a function of s, about the point s.

¢ (s)

()= (940" () (sa— )+ T

(,go—_g)2+ e

where the primes indicate derivatives with respect to s.
The integral is then

s-4-a s+-a
[ e @ ds= |7 g log (o) [0+ () am) 1

=7lrl:a¢’(s) (log a—1)+q3—‘p—;!l(s} <log a—%)-i—- . :I (6)

In most cases, only the first term need be used in equation (6).

The same type of approximation can be used to evaluate

a portion of the integral if the opposite side of the airfoil comes in the neighborhood of the point (x,2).
A more general equation applicable to a segment that does not pass through s is:

L% dog [t (=l 02) o=
TJ p+b

NE

’

2!

2 72 he—
o) [ e log (e —b log () —2(c—b)+20 san- I 1

D) (24 log (W6 — (12+1) log (48— (= b))+

%@ [03 log (h?+¢?) —b® log (A*+ bz)—i— (E—b%) +

h(c—b
2h%*(c—b) —2h® tan™! E(;—_Fgg)]—l- - } (6a)
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where b is the perpendicular distance from s to the segment,
s,=p locates the foot of the segment, (p-+5b) and (p-¢)
are the limits of the integration of s,, and approximately,

o (D) =¢ (P+D) b (+ B+ ¢ (5+)

¢ (D)= (pH+b)~be' (p4b)
&)= (P e

Equation (6a) may be used when the line segment is not
of equal lengths on either side of the perpendicular foot or
when ¢’(s) or its derivatives are discontinuous at either
(p+bd) or (p+e¢). If a=¢=—b and h=0, equation (6a)
reduces to equation (6). The size of a, b, or ¢ is deter-
mined by the requirements that the segment in question
be nearly straight (the approximation is of the second degree)
and that ¢(s,) be accurately represented by a Taylor’s
series expansion of few terms.

Exit-velocity diagram Complete-velocity diagram

/S

wy' wm' Wi
Reflected-velocity diagram

Vo1
W 41

Entrance -veloc/ty aragram

FIGURE 1.—Notation for cascade flow.

Airfoils in cascade.—The expression for the complex po-
tential for the flow about a cascade of airfoils is derived in
appendix B. The notation is defined in figure 1. The
equation that corresponds to equation (2a) for isolated air-
foils is for a cascade of airfoils

w@)=awn 3 [log[sinF =20 | dotzd @

where

w, mean stream velocity, which is one-half the sum of
complex (reflected) velocities upstream and down-
stream of cascade, V,—i1",

&  distance between successive airfoils in cascade

The mean velocity wy,’ corresponds to the uniform velocity

w,’ of the isolated airfoil flow.

The term zw,’ is the complex potential function resulting
from the mean flow. In the integral, the element de indi-

cates the vortex-element strength and log [sin («/S) (z-2,)]
represents the complex potential at the point z caused by an
infinite row of unit vortices at 2z,2nS where n=0, 1,

2, . . .. The imaginary part of equation (7) is the stream
function,
*So=l .
YO =4~ [ (5,5 de(s) ®)
where »

F2(8,50) =% log [sin2 g (x—2,) -+ sinh? g (y—y,,)] .

is expressed in arc-length parameters and y,(s) is the stream
function at (x,5) induced by a mean stream whose complex
velocity is w,’; that is,

‘Pm: —$Vy+?/Vz

The values of (x-z,)/S and (y-y,)/S for various values of fe
are given in table I. A plot of z-z, and y-y, for constant
values of 1,(z,2,) is shown in figure 2. These curves may be

S2 (X~ %o, Y-Yo) (Y-Yo)
0.3

(- 25)

T1GURE 2.—Plot of curves for constant fa(x—zo, ¥—¥o).

interpreted as the streamlines of the flow induced by an
infinite row of vortices of unit strength located at the points
(x,£nS, y,), where n=0, 1, 2, In the region of a
vortex, the streamlines are nearly circles; that is, the flow is
nearly that induced by an isolated vortex. At a distance
from the vortex row, the streamlines are parallel lines, as in
the flow pattern induced by a continuous uniform distribu-
tion of vorticity along a straight line instead of a row of
discrete vortices. The velocities on the two sides of such a
vortex line are of equal magnitude but opposite in direction.

This behavior of f, for large |y—v,|/S and also for small
(y—y,,)“’g—g(x—x,,)“’ can be described as follows: When both
(x—=,)/S and (y—1v,)/S are small,

Foler20) = 4= log Ty [@—2)"+ (7 —v.) ®)

which differs from f,(z, z,) only by a constant. For large
values of [y—1,|/S, irrespective of (z—z,)/S and a constant
term,

file, 2 <5 (10)

which is the stream function of a uniform stream parallel
to the z-axis.
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Equation (8) can be used for computing the stream function along the boundary of an airfoil in cascade just as

equation (5) is used for the isolated airfoil.
using equation (9) for £, (s,s,).

{*s+

The more general equation (6a) is modified for cascades by
multiplying the argument of all logarithms by the factor
/S

ADJUSTMENT OF SHAPE

If the stream function for the assumed airfoil has been

ha ashana miigt +than

aromnitfed and hage hapn famn o vary, the shape must then

A+
computed and has been found to vary,
be adjusted to give a more nearly constant stream function.
The shape changes are made by rotation of the body plus
displacement of the individual points normal to the mean
stream. The rotation is used to place the front stagnation
point properly.

Rotation of the airfoil.—In the formula for computing the
stream function of an isolated airfoil, the contribution of a

wvartay alaomant at (»
VOILCX QGRS dU \dp, Yo

(x, ¥) is dependent merely on the distance between the two
points. Consequently, if the entire airfoil is rotated, the
effect of the boundary vortices on the stream function at any
point on the airfoil boundary will not change. The effect of
the blade rotation on the stream function along the boundary
is therefore determined by the change in relative position of
the points in the uniform stream. The first adjustment in
shape is a rigid rotation of the airfoil in order to obtain a
more nearly constant stream function along its boundary.
If the airfoil is rotated through an angle B, the stream
function is so changed that ¢ (s) is a function of 8 and s and

I \ ta tha gtroam funection of 9 noint of
VO Ui SulCalll 1UllCuiGll U1 a pUlliv 4t

The integral over the range in the neighborhood of the point s is obtained by
The result, derived in the sime manner as equation (6), is

o [ s w06/ 60 ds={as @ log (Fa)—1 [rar €5 [1og (o) -2 ]+ - - -} (6h)

may be written ¢ (s, 8). When =0, ¥ (s, 0) is the original
stream function before rotation. After rotation the new
stream function ¢ (s, ) may be expanded in a Taylor’s series
about the point g=0,

< ra\l/(syﬁ)—l +

Lo A —. s N
Y o,P) — Wi,V T L »6 5o

Only the first two terms in this series will be used because 8
is assumed to be small. The angle 8is to be determined for
the minimum mean-square deviation of the stream function
from its mean value. Because the object of the rotation is
essentially to adjust the shape of the nose, the rotation might
also be made to reduce the root-mean-square deviation of the
stream function to a minimum for a portion of the shape
including the nose.

The mean value of the stream function at any angle 8 is

Vo =1 [ vep ds=1 [ {peo+s[Shee | Las an

The difference between the new stream function ¢ (s, 8) and
its mean value y (B8) is squared and integrated to obtain a
measure of the variation of ¥ (s, 8) from the mean value at
the new angle. The condition for obtaining a minimum
root-mean-square deviation by adjusting g is

i [ven—vo Ja—2 [ [#60+s P50~ | o
= f o w50+ 45030 ] ‘Mf@—d‘m]l (12)
—2 [ HEO yis,0)+8 X0 —3(s) | as—

d;@ﬁ‘” | [ve0+8 %303 | as (13)

The second integral vanishes by virtue of equation (11),
which may also be used to eliminate ¥ (8) from the remaining
term. The solution for 8 is

f¢()‘l‘”80)d ——[fsb()d][fld‘b(so)d »
14
l[fldxb(s o)d] f[dw(s 0)]03

In order to apply equation (14), dy/dB8 must be known at
points along the boundary of the airfoil. For the isolated
airfoil, the contribution of the vortices is unaffected by the
rotation and therefore

& _dy, d
25=d8 =g~V uVa=—"V

If the airfoil is rotated about the point (x,, y.), equation (15)
becomes

%zcos B [(x—2) Vet (y—y) V I+

sin g [(z—z)V,—(y—y.) V.l (16)

where (x,%) are the coordinates of the point before rotation.
For small values of 8, equation (16) reduccs to

=2 Vet =3V, (17)

The choice of (r,, yc) will have no effect on the results in this
case.

When the airfoil in cascade is rotated, the change in the
position of the vortices of the adjacent blade must be con-
sidered. For the isolated airfoil, it was unnecessary to con-
sider the change in position of the vortices because the
influence of a vortex (equations (3), (4), and (5)) depended
on the function f;, which is constant on circles. The influence
of the vortices on the airfoil is therefore independent of
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direction. Because the f, contours are not cireles, the rota-
tion in cascade does have an effect, which is approximated
by considering all closed f» curves (£;<C0) as circles in order
that the effect of all vortices in the region 7,<{0 may be
neglected during rotation. The effect of all vortices in the

region f,>>0 is estimated by assuming that all the f, contours

for £o>>0 are straight lines uniformly spaced. The flow

___corresponds_to that between two infinite straight parallel

vortex sheets of uniform strength per unit length. This
flow induced by the vortices in the region f;>>0 is in the
z-direction, and the direction of the flow induced by the
vortices for which ¥, >y is opposite in sense to that induced
by the vortices for which y,< y.

As the point being considered is changed, the regions for
S>>0, yo.>vy, and £,>>0, y,<y will include different sections
of the blades, and hence different vorticity, with the result
that the z-velocity component v, induced by the vortex
sheets will vary with the point under consideration. The
algebraic sum of the z-component of the uniform flow
velocity and the variable x-velocity ¢, induced by the vortices
in the region f,°>0 is to be used like the veloeity component
V., in rotation of the isolated airfoil (equation (17)). The
quantity V, in equation (17) is replaced by the corresponding
Ver=V.+e,. The vortex strength per unit length at any
point on the airfoil is equal to ¢’(s,) and, therefore, from
cequation (10) the z-component of the veloeity induced by the

vortices is 55 @’ (8,) ds,, where the integration is carried

out over the portion of the airfoil where f:(s,8,)>0. A
distinction must be made between the two regions y,<y and
¥, >y because the induced velocity components have oppo-
site directions.

The computed result of rotating an airfoil in cascade de-
pends upon the choice of (rqy.). In order to minimize the
error involved, values of dy/dB are reduced by choosing
(rey.) as the centroid of the vortex distribution on the airfoil.
If the improvement in the mean-square deviation of ¢ is
small compared with its original value, it may be preferable
to omit the rotation of the airfoil because of the error inherent
in the approximation for d¢/dB. The decision should be made
chicfly on how ¢ varies at the airfoil nose and whether it is
approaching a constant value in this region with successive
corrections of the shape.

Distortion of the shape.—The stream function computed
after the isolated airfoil has been rotated will, in general,
still vary along the boundary. This variation can be re-
duced by distorting the shape of the airfoil. If the distor-
tion is small, the change in distance between any two points
on the boundary will be small, although the change in the
direction of a segment joining those points may be consider-
able. The effect of the distortion on the contribution to
the stream function of the vortices on the boundary is
consequently neglected. The largest effect of the distortion
will be to change the position of the boundary points in the
uniform stream. The airfoil is therefore distorted in such a
manner that the change in the contribution of the uniform
stream to the stream function will eliminate the variations
in stream function. For points directly opposite each other
on the airfoil, the change in distance will be of the same order
of magnitude as the distortion. Consequently, distortions
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that result in change of thickness of the airfoil converge
very slowly because of the inaccuracy of the fundamental
assumption on which the correction is based.

Thus, when the stream function along the boundary of
the isolated airfoil is known, some number is arbitrarily
chosen as the desired constant value of the stream function.
If Ay=y¢—7 is the difference between the computed stream
function at a point and the desired constant, the point is
moved a distance —Ay/V perpendicular to the direction
of the mean stream, where the direction of increasing uni-
form stream function is taken as positive. The airfoil in a
cascade is distorted in the same manner, by using the varying
resultant local mean stream velocity \/ V.24 V,2; corrections
are made with ¢ equal to the mean value of ¢ on the airfoil.

COMPUTATIONAL PROCEDURE FOR CASCADES
CHOICE OF VELOCITY DISTRIBUTION

Several factors influence the choice of the velocity distri-
bution for which an airfoil is to be found. Especially in
rotors, sturdy blades are required. Long thin tail sections
must be avoided and where high rotative speeds and stresses
oceur, overhang of thin sections is likely to induce blade
failure. The radial distribution of airfoil cross-sectional
area is also fundamental in determining the blade-root
stresses.  Overhang can be reduced by proper choice of the
veloeity diagrams for the sections, but the other factors are
influenced chiefly by the thickness of the section.

The desired thickness may be attained by first assuming a
blade shape and spacing and by then using the stream-filament
method of reference 6 to compute the velocity distribution
over a portion of the airfoil that determines the thickness.
The spacing may be regarded as fixed but the curvature can
be adjusted if local velocities are too high for the desired
thickness. This computed velocity will then serve as a
guide to the choice of an airfoil velocity distribution, which
should be chosen to avoid high velocity peaks and steep
negative gradients. If the average of the velocities on
opposite sides of the blade camber line is retained in the
modification of the velocity distribution computed from the
stream-filament method, the thickness will also be retained.

Because of the irrotationality of the fluid motion, the
velocity integral or circulation around the airfoil must be
equal to that around a blade but over a width equal to one
blade space. Therefore,

f¢’(s) ds=T=8(V,1—Vs.5)

where

T circulation about airfoil

V.1 tangential velocity entering cascade

V.. tangential velocity leaving cascade

This relation places a condition on the assumed velocity
distribution.

If the computations thus far have been made in order to
select a velocity distribution for the airfoil cascade in a com-
pressible fluid flow, an equivalent velocity distribution for
the flow of an incompressible fluid must be determined
before the blade shape can be computed by any method
based on incompressible-flow theory. For subecritical flows,
the directions of the inflow and discharge velocities are
nearly the same for compressible and incompressible flows,
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but for incompressible flow the component normal to cascade |

axis is the same upstream and downstream. The Kdarmdn-
Tsien compressibility correction (reference 7) or that of

Garrick and Kaplan (reference 8) may be applied to the

velocity on the blade surface to estimate roughly the corres-
ponding incompressible-flow velocity distribution. The re-
sulting velocity distribution in any case must satisfy the
circulation condition. This procedure does not give an
exact solution for compressible flows, but the resultant com-
pressible flow will have approximately the desired char-
acteristics of low pressure gradients and no high velocity
peaks.

COMPUTATION OF AIRFOIL SHAPE FROM THE CHOSEN VELOCITY
DISTRIBUTION

The numerical computation of the guantities involved in
the preceding analysis, particularly the function f,, is ex-
tremely laborious when tables of f»(s,s,) are used. Most of
the computations are therefore executed graphically. In the
cascade example, the air was assumed to enter the cascade
at an angle of 45° from the cascade axis and to leave at an
angle of —30° from the cascade axis. The prescribed veloc-
ity distribution is given in figure 3(a). The value of the lift
coeflicient for this airfoil is 3.1. The shapes of the isolated
airfoil and the airfoil in cascade are computed by the fol-
lowing steps:

2~ Suction surface
/ -
0 1 1 ] ] 1 | [ J
.5 10 .5 20 25 30 35 40
- S_
-/ Pressure surface S
pls) ()
14
T
/ -
0 [l 1 ! ] i | 1 L

Y

(b)
(a) Initial airfoil.

(b) Final airfoil.

Fi1GURE 3.—Drescribed veloeity distribution for thick airfoil in cascade.

1. Curves for constant f; for the isolated airfoil, or con-
stant f; (fig. 2) for the airfoil in cascade, are drawn. This
diagram should be made on some transparent material that
will change neither in size nor shape. The coordinates of the
curves for constant f. are given in table I.

2. A desired velocity ¢’ (s) is chosen as a function of the
arc length of the airfoil (fig. 3(a)). An airfoil shape having
the desired total arc length is assumed and is drawn to the
same scale as the plot of f; or f.. The drawing is made on
grid paper and, in the case of a cascade, the z-axis coincides
with the cascade axis (fig. 4).

3. The velocity distribution ¢’(s) is integrated to obtain
the velocitv potential ¢(s). This function is plotted on the

same chart as the assumed airfoil shape for the corresponding
y-coordinate, as shown in figure 4, by plotting both ¢ and

Sy —

I

[

0 ?

FIGURE 4.-—Plot of airfoil and velocity potential for use in computation.

the y-coordinate of the airfoil against s on a supplementary
graph. In regions of the airfoil where ¥ varies little with s,
that is, where the airfoil boundary is parallel to the z-direction,
© should be plotted against z in the same manner, as shown
in figure 4.

4. In order to find the stream function at a point (z,y)
on the airfoil, ; (s,s,) must be plotted as a function of »(s,)
to evaluate the quantity /f.(s,s.,) de(s,) of equation (8).
If the chart of #: is superimposed on the airfoil with one vor-
tex center overlying the point (z,y), the value of f may be
read at (x,,7,) and the corresponding value of ¢(x,%,) may
also be read from the plot of o(z,,5,). The value of f;(s,s,)
is the same as would have been obtained by centering the
chart on (r,y,) because of the symmetry of the function.
A succession of values of ¢ and f; are obtained in this fashion
for various positions (z,3,) that intersect the f, contours,
and a plot of these points (f2,¢) may be made for the assumed
position (z,y). This procedure is illustrated in figure 5 for
a particular point (z,y) on which the f, chart is centered.
The readings for a particular (z,,y,) are shown by the arrowed
lines. The points 1 to 6 on the blade are shown on the
corresponding f» curve. The discontinuity of ¢ between
points 1 and 6 is the circulation. The discontinuity between
4 and 5 represents the region where f, approaches — .

5. The proper method of integration then proceeds from
1 through 6 to 7 and then to the origin, with constant f.
from 4 to 5. The region from 4 to 5 with f, approaching
— o is computed by equation (6) or (6b); the constant a is
assumed to be the radius of the near-circle, which corres-
ponds to the value of f, where the discontinuity from 4 to
5 occurs.

The total area including this small addition is

fsa’(so)fe(s,so) ds=ff2(s,sa) de

which is the stream function due to vortices on the entire set
of airfoils in cascade. Where f;==0 at the points A, B, C,
and D (fig. 5), the values of ¢ are noted as ¢.(s), ¢r(s), ¢c(s),
and ¢p(s). These values are used in computing the stream-
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function change caused by fotating the blade. The stream
function at the point (z, ¥) may now be computed from
equation (8) or (5), and

’l/m= - Vyz_l' sz

-3

45
FIGURE 5.—Superposition of figures 2 and 4 to obtain plot of fz against .

A plot of the stream function (variation from the mean
value) is shown in figure 6 for the initially assumed shape.
Corresponding points on adjacent airfoils have a difference
of Ay/V,S equal to 1.0.

o Initial ‘airFfoill | I
+ First gooroximationt
a Seventh qpproximorion

Ay

VS T = — =
[—0~

P =V 0 S e bl a |

__’M——-f Nkt A//

ag 5 o 15 20 25 30 35 40 45

s
s

FIGURE 6.—Variation in stream function along initial shape and first and seventh approxi-
mations of airfoil cascade.

6. When ¢(s) is known at a sufficient number of points,
the airfoil may be rotated as previously described. For the
isolated airfoil, equations (14) and (17) may be used directly.
For the airfoil in cascade, the coordinates of the centroid of
the airfoil must first be computed by

— §x¢' (s2) ds,

1 '
yc:‘f §y¢ (s0) ds,

821313—49——2

Before equation (17) can be used to compute dy/dB, the vari-
able quantity V,, must be computed. The vortices in the
region f, >0 are considered to be uniformly distributed along
the cascade axis and the velocity induced by such a distri-
bution is

=3

* where v is the vortex strength per unit length along the cas-

cade axis for f;>0. Therefore,

1
”z=ﬁf‘9, (So) dso

where the integral is to be taken over the regions f, >0. The
region f, >0, ¢, >y contributed a positive component to v,
whereas the region f,>>0, y,<y contributes a negative com-
ponent. The computation is simply carried out by making
use of the fact that the integral for v, is the difference between
values of ¢ at points where f,= The values of ¢.4(s,),
o5(8,), vc(8,), and ¢p(s,) from step 5 are used at this point
to obtain

20,8= S ¢ (8,) dso=s— ¢p+T— (¢c—¢s) (18)
where T' is introduced because of the discontinuity in ¢ at
the trailing edge. The sum ¢4—¢p+T gives the effect of
the vorticity in the region f;(s, s,) >0 near the trailing edge,
and the term ¢c— ¢p gives the effect of the vorticity in the
region f3(s,s,) >0 near the leading edge. If either the leading
edge or the trailing edge lies in, the region f;(s,s,)< 0, only
two points of intersection will remain and one of the two
groups of terms in equation (18) will vanish. The quantity

513 f #’(s,) ds, is added to the z-component of the original

uniform stream velocity and the quantity dy/dB of equa-
tion (17) may be computed for a number of points and the
angle 8 computed from equation (14), using the values of (x,y.)
just determined. After these computations have been made,
the airfoil is rotated through the angle B8, and the value

a .
v+B5 a6

the point after rotation.

7. A value of ¥(s) is known at points along the airfoil
boundary. The mean value over the airfoil ¥ is subtracted
from ¢ leaving Ay. For the isolated airfoil, no subtraction

A
is necessary. Each point is moved a dlstance—‘/—v————%_—?
z,T

in the direction perpendlcular to the velocity computed in
step 6. The curve joining the points in their new positions
is the adjusted airfoil.

8. The total arc length of the adjusted airfoil will be
different from the original one, in general, although local
changes in length will be negligible. The airfoil is so scaled
that the length of the suction side is the same length as it was
before distortion because this surface is the critical surface
of the airfoil. This process will result in a change in length
of the pressureside. The velocity over the pressure side ¢” (s)

is assigned as the value of the stream function of
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must then be altered in such a manner that the difference
in potential between the two stagnation points remains the
same. As a result, the quantities that retain specified values
are the length and the velocity distribution on the suction
side and the circulation around the airfoil. The entire
procedure is repeated with the adjusted shape until the
variations in the stream function result in very little change
in the shape of the airfoil.

DISCUSSION OF EXAMPLES AND TECHNIQUES

For the example being computed, the stream functions
obtained for the initially assumed shape and the first and
seventh approximations are plotted against the arc length
(fig. 6), which is taken as zero at the trailing edge and pro-
ceeds counterclockwise around the airfoil as shown in
figure 7. The fact that Ay for the initial shape is positive
over the first half of the arc length and negative over the
second half indicates that it is too thick because the required
distortion in shape will make it thinner. The change in
thickness results in a change in velocity distribution over the
pressure side of the airfoil in order to maintain the desired
circulation. The velocity that was originally assumed,
which is equal to the vorticity per unit length distributed on

"""" Initial qirfoil
Final airfoil

FIGURE 7.—Initial shape and final approximation of thick airfoil showing cascade spacing.

the initial airfoil, is shown in figure 3 (a) and the velocity
over the final shape in figure 3 (b). The length of the
pressure side has increased and the velocity has decreased
in the portion of 1:1.1.

Over the section of the airfoil that has collapsed to zero
thickness, the surface velocities of figure 3 (b) may not have
been obtained, but the loading (circulation per unit arc
length), which is the difference in the velocities on opposite
sides, has been realized.. In practice, this collapse is pre-
vented by increasing the assumed velocity on the airfoil
surface.

If the initially assumed airfoil shape has a thickness that
differs considerably from the correct one, the process of shape
adjustment will converge rather slowly. The labor can be
reduced, however, by computing the stream function at a
few points on the airfoil and locating these points to deter-
mine the thickness. This procedure is followed for the first
few approximations until the thickness of the airfoil is fairly
accurate. The streamn function is then computed at a
larger number of points, particularly near the leading edge,
in order to get more detail of the shape.

Arbitrary specification of a velocity distribution may
result, not in a physically real airfoil, but in a figure-8
shape or a collapsed shape (zero thickness over a portion of
the blade). The velocity distribution must then be modified
to obtain a real shape; these modifications should be selected
to keep the desirable properties of the original distribution.
Velocity peaks and steep velocity gradients, which tend to
occur on the suction side of an airfoil, are to be avoided.
If the airfoil collapses, the vorticities of the two sides tend to
cancel each other and the remaining vorticity represents the
difference in velocity across the thin airfoil rather than the
velocity along the boundary.

The method was also applied to the design of a thin airfoil
(camber line) in a cascade. The vortex distribution is
equivalent to load distribution (difference in velocity across
the airfoil) rather than velocity as in the case of a thick
airfoil. The velocity diagram for the cascade and the desired
load distribution for the thin airfoil are shown in figure 8.
The value of the Ilift coefficient of the resultant airfoil is 4.1.

N 14
= lh. Vs g4
N 30 “45°
L 2
qs Sl \\
Q
N - ™
3 /T
8]
I8}
Q
~
g 5 0 5
S
S
FiGURE 8.—Velocity diagram for cascade and prescribed load distribution for thin airfoil in
cascade.




The initial shape was obtained by assumjng Zero spacing
between the airfoils. The initial shape and the first and
third approximations to the airfoil shape are shown in figure 9.

Initial airforl .
First approximation
Third approximation

FI1GURE 9.—Assumed shape and first and third approximations of thin airfoil showing cascade
spacing.

The second and third approximations differ very little.
The third approximation is redrawn in this diagram to show

ISOLATED AND CASCADI? AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION . 9

the spacing between airfoils. The convergence of the method
is shown graphically in figure 10. The variation Ay of the

o inifial ‘airfoil | |

J + First gpproximation
T~ o Second approximation
Ay = v pr—
VS i o e a
3 = e
/+// T~ |_ol—
-/
0 5 Lo 15
S
» 5
FIGURE 10,—Variation in stream function for successive approximation of thin airfoilin
cascade.

stream function from its mean is divided by VS to make it
dimensionless and is plotted against the arc length along the
airfoil where s=0 at the trailing edge. The stream function
computed on the second approximation is nearly constant,
which gives the third approximation almost the same shape
as the second one. The rapid adjustment of camber con-
trasts with the slow adjustment of thickness.

Fricar ProrursioN REsEARCH LLABORATORY,
NarioNnal Apvisory COMMITTEE FOR AERONAUTICS,
CLEvELAND, Omio, March 4, 1947.



APPENDIX A
VELOCITY DISTRIBUTION ON THE DERIVED AIRFOIL AT DIFFERENT FLOW ANGLES

Conformal mapping.—When an airfoil is given, the ve-
locity distribution over its surface must frequently be found
at different angles of attack. This problem may be solved
by the method of conformal mapping, which consists in
mapping the region exterior to the airfoil on the exterior of
a circle. The velocity around the airfoil is obtained from the
known velocity around the circle. Procedures for finding
the function that maps a given airfoil into a circle are pre-
sented in references 1 and 9 for the isolated airfoil and refer-
ences 3 and 10 for the airfoil in cascade.

In general, the procedure for finding the mapping function
of an airfoil is a laborious one. But when, as in the present
case, the velocity distribution over the airfoil at a particular
angle of attack is known, the correspondence between points
on the airfoil and on the circle, and hence the flow velocity
at other angles of attack, can be obtained very easily.
Indeed, the correspondence of points and the velocities for
various angles of attack can be obtained by the method given
in reference 11 from the initial data without knowing the
airfoil shape, because the complex potentials of the airfoil
plane and the mapping-circle plane are equal. Before the
airfoil is designed it is therefore possible to check whether
the airfoil to be computed will be satisfactory under condi-
tions different from the design condition.

Isolated airfoil.—The flow about any airfoil shape can be
mapped on the flow about a unit circle in such a way that
corresponding points have the same potential. The flow
about the airfoil is given and the potential function ¢(s) at
each point is computed. If the potential function on the
airfoil is computed by integrating the velocity from the
stagnation point at the trailing edge in a counterclockwise
direction around the airfoil oriented as in figure 1, the poten-
tial will be zero at the trailing edge, decrease to a minimum
omin 8t the stagnation point at the leading edge, and then
increase to a value equal to the circulation T at the trailing
edge. The corresponding flow about the circle is determined
by the conditions that it must have the same values of ¢,;,
and T for a correspondence to exist between all airfoil and
circle points. If 6, is the central angle of the stagnation
point on the circle that corresponds to the trailing edge of
the airfoil,

Tlmin— _ (cot 94 0+ /2)

T (A1)

Equation (A1) can be solved numerically for 8, because all
the other quantities are known. The velocity at infinity in
the circle plane V, can then be determined from the Kutta-
Joukowsky condition, which requires that 6, be a stagnation
point; that is,

T

Ve=- 47 sin 07 (42)

10

The velocity potential at points on the circle is

oe—=—2V, cos 0—{-%’—{—2% cos 0T—£0T

27 (A3)

. r . .
The quantity 2V, cos 0T—% 6ris a constant thatissubtracted

in order to make ¢==0 at the stagnation point correspond-
ing to the trailing edge.

The correspondence of points on the airfoil with points on
the circle is obtained by associating points where o(s)=p.,.
The velocity on the circle at a uniform stream flow angle « is

v.(8,a) =2V, [sin (6+ ) —sin (87+a)] (A4)

The nature of the conformal transformation is such that the
ratio of the velocity at a point on the airfoil to the velocity
at the corresponding point on the circle is independent of
angle of attack. Therefore, the velocity ¢.’(s) on the airfoil
at flow angle « is
pa’(8) _ o'(8)
2:(0,0)  0,(8,0)

(A5)

where the design flow angle is taken as zero. Equation (A5)
can be used to compute the velocity distribution on the air-
foil except at the two points that were stagnation points at
the design angle of attack.

Airfoils in cascade.—The flow about a cascade of airfoils
can be mapped conformally into the flow about a unit circle
with two singular points located on the real axis symmetri-
cally with respect to the center of the circle. These singular
points correspond to the points at infinity in front of and
behind the cascade, respectively. In a cascade of airfoils,
the distance of these points from the center of the circle is
uniquely determined by the same conditions that determine
the flow about the circle in the isolated case; namely, the
circulation per airfoil, the velocity potential at the leading
edge, the blade spacing, and the upstream and downstream
flow angles.

The distance from the singular points to the center of the
circle is denoted by ¢X. The flow about the circle is such
that the location of the stagnation points 6, is determined
by the relation

- %S': S_is‘lll?l GI‘{ cos A+ é?Ti% sin A (A6)
where X is the angle of inclination of the mean stream to the
normal to the cascade axis. (See reference 6 for details.)
The quantities T', V, S, and A are known from the flow in
the cascade plane and therefore equation (A6) provides a
relation between K and the location of the stagnation points.
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The velocity potential at any point on the circle is

VS /s

_ . . sing _1 cos @ ) T, tan§
=" (S‘“ ban™ g g Cos MtanhT Ce R ) o tan T e R
VS /. _; sin 8z _1 €OoS 07') T _; tan 8z
= (sin ot S0 —cosn tanh-t 25084 T an fanh K. (A7)

" Where 07 is the particular value of 6, corresponding to the trailing edge of the airfoil. The expression in brackets is a
constant so chosen that the potential will vanish at the stagnation point corresponding to the trailing edge of the airfoil. In
order to map the cascade on the circle, K must be found so that the value of ¢, . at 8y, the stagnation point 6, corresponding
to the leading edge of the airfoil, is equal to gn, the value of the velocity potential there. The identity

37 2 2
(S]slllllll 018{ sinh? K- ( C(c)(s)i 012 cosh? K=1

. ] .. cos 6, . .
1s used to eliminate cosh Kfrom equation (A6) to give

2
sin 6, _2—11;8 cosh? K sin A+ cos )\\/cosh"’ K—cos? >\—<——2II}S> cosh? K sinh? K (A8)

simh K cosh? K—cos? A

. . . . . sin 6y  cos 6
In successive approximations, a value of K is assumed and equations (A8) and (A6) are used to find snh }—{: m,
sin 0, cos Op

2 T, Cos Ur | 5 v o i . i ati —=0,. If fy) is not equal to ,
Sinh K and cosh K These values are inserted into equation (A7) to find ¢, . at 6=y @e,c(Oy) is q Pmin

another value of K is chosen, on the premise that ¢, .(8y) will decrease as K is decreased. When ¢c.c(0x) 1s evaluated,
care should be taken to use consistent values of the inverse tangents. After two values of K and ¢..c(0y) are determined,
interpolation or extrapolation may be used for new values of K,

When K has been found, it is used in equation (A7) to evaluate @c,c at values of 6 all around the circle. A point on
the cirele corresponds to the point on the airfoil where ¢(s)=¢, .. The velocity at the point ¢ on the circle is

VS sinh 2K cos §  cosfr . sin §  sin 6 )]
Yo e= "7 cosh 2K—cos 26 [COS A (cosh K EthT{)+Sln A (sinh K sinh K (A9)

and the velocity ¢.’(s) on the airfoil at any other mean
flow angle A+« is

0e! () =0 (0,04 ) 5 205 (A10)
as in the case of the isolated airfoil.

The designed airfoil was mapped on the unit circle by the
method described. The constant K, the natural logarithm
of the distance from the singular points to the center of the
unit circle, is 0.075. The correspondence between points
on the airfoil and those on the circle is plotted in figure 11,
which shows the arc length of the airfoil as a function of the
central angle of the circle. The velocity at any point on the
airfoil for any angle of attack a may be obtained from
equations (A9) and (A10), the velocity distribution as in
figure 3 (b), and the relation between s and ¢ as in figure 11.

The ratio v‘al((;;\) is equal to df/ds (radians) and need be
c,c H

computed only once for any given airfoil.

-/£[70 —Sb o 5]0 100 150 200
Central angle of circle, B, degrees

-:?00 =150

FIGURE 11.—Correspondence between points on airfoil and points on unit circle by conformal
transformation.



APPENDIX B
DERIVATION OF THE CASCADE EQUATION

An equation is to be developed for the complex velocity
at any point in the field of flow of a fluid past a row of equally
spaced, congruent bodies. Coordinates axes are chosen with
the origin inside one of the bodies and the z-axis in the
direction of the row. (See fig. 12.) The body containing

=2
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&
e &
&> |

—‘—- —Z
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* O,
\ A
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I
FIGURE 12.—Diagram for derivation of equation for flow about cascade.
w'(2,) dz,= f(N-Hﬂ)S w’ (x,—1t) dzot taw/ [(N+1/2)S+y ]
RE,—2 ° (V1S Xo—it—z 0 J (N—*-l/?)S"f—Wo

In an evaluation of these integrals, the function w’(z,) is
periodic, with period S, and approaches a constant value
infinitely far from the cascade; that is,

w’ (1?0-{—1.:1/0)%’1,02, as Y, —>®

and
W (xo+1Yo)—>w, as Y,—>—

fwmwwu—m

(NH1/D)s Lo—il—2

dz,

The first of these integrals is

(N+1/2)S dr
wl’f - — =w, log
—(NF1/2)S Yo

as N—« and {— «, provided that ¢/(NS) — 0.

(N+1/2)S w3/ (xo'—'lt) N
f we' (@it >

: dr,=
~(N+1/9)8 LTo—U—2 RE=N

¥ [
n=—N J—82 l‘0+72S—?t—

Sr2 QU3’(Z0 Zt) dr _+_Z

-J.

S/2 Z‘o—lt—

idy,+

) f<N+1/2>s ]
Ao 4
) vryms o—it—z

[—(N+1/2)S—it—2]

the origin is denoted by By, bodies along the positive di-
rection of the z-axis by By, B, . . ., and along the negative
direction of the r-axis by B_;, B_;, . . .. A circle A of small
radius is drawn about the point z where the velocity is to
be determined. A rectangle R is drawn with its center at
the origin and its sides parallel to the axes of length (2N+1)S
and width 2¢, which contains the bodies B_y, . . . B_y,
Bo, By, . . . By, and the circle A. If a side of the rectangle
intersects one of the bodies, the side may be distorted to go
around the body with no essential change in the proof.
The function w’(z,)/z,—z) is an analytical function of =z in
the region inside the rectangle B but outside the bodies F,
and the circle 4.

Therefore
* w'(%p) . w (40) _ N g ?.l_)’_(Zia) B
RZ—2 " ° AZ,—2 4z n=Z—‘\JBn20—~2 dz,=0 (B1)

The first integral can be broken up into four integrals,
one along each side of the rectangle, namely,

—(NHUDS o’ (1,4 F) f—z w'[— (N-1/2)S+iy,)
(N+1/2)8 ;rm—zt—zd o — (N 1/2)S+%yo ?dyo
(B2)

From the last of these conditions, it follows that

w’ (r,— it) =ws" (x,— ) +wy’

where

wy' (x,— it)—0 as t—w
Therefore, the first integral on the right side of equation
(B2) is

WSy ey )
(A+19Ss Lo—it—z2

B3)

I

[(N-+1/2)S—it—2]

-,

The last integral in equation (B3) is

me“wﬂn—@d
—12)s To—U—

—1t) dz,

82 2(x,—it—z2)wy (x,—1t) dx,
—1it—2z)2—n28?

=1 J—82 (x,
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If ¢ is chosen sufficiently large so that|w,’ (z,—it) | <l¢, where e is any preassigned positive number, the moduh of the integrals

are less than

52 dz, NSz 2x,—it—z| dx,
l:f sp Iwo—%t—zl+2 f_s/2|(xo—it—z)2—n2$’2]:| I:f

When N— =, this quantity approaches

52

S o0t I:Sx/(ma—x) + (t+y)2] dz,

This integral is finite and, because e can be made arbitrarily
small as {— o, the last integral in equation (B3) approaches
zero. Therefore,

S/2

—>riw,’

f(N+1/2>s W (@—it)
—=e Ty
(NS To—it—z

dz, ifslz 2w/(xo—x)2+(t+?/)2d700]
52 VD G o) | w5 - @)+ Gy T— 1S

as t— and ]%S —0. In the same way and under the same

conditions,

f RS W @bt G sty
(NH1/2)S ° 2

Zotit—z

The second and fourth integrals on the right side of equa-

tion (B2) can be evaluated by comblnlng them. Because
w’ is periodic,

w [(N+1/2) S+ iy l=w'[—

and therefore,

(N+1/2)S+1y.]

f [(N+1/2)S+zya] +f"w — (N4 1/2)S+iy,] ., ___f‘ —2(N+1/2) SwW[(N+1/2)S+iy,] .,
(NF1/2) S+ ty,—z Yo (NF1/2)SFiy,—z ¥~ ), Gyo—2)— (NF+1/2)28° iy,
The velocity w/[(N-+1/2)S+1iy, is bounded for all values of y,; that is, there is a constant W such that
[w [(N-1/2)S+1y,]|<W. The absolute walue of the integral is less than
2SN+ W | 4y, sosv 12w [ dy,
? Gy—ar= (NF1esT] =PRI ) G s v pps =
= 2SN+ 12)W Ftan“ =y —tan™! )t/
V(NH-1/2)282—u? v(N+ 1/2)282—x2 v (N4-1/2)282— 32
Ast—w and T\%S%O’ this quantity approaches zero. It has By the residuc theorem,
been shown, therefore, that when t—« and —ieo, w'(zo) dz,=2miw’ (2) B5)
NS ARe— 2
w (20) . . ’ ’
R Zo—2 dzg—>mi (W' +wn') (B4) The periodicity of w’(2) implies that
- W/ (20) & w'(20)
n=—N Zo— a2, n—z—\ By S0t RS — d¢0
o w (40> w (—’va)r)(‘o_i) f K o
_fBo - dz o+f_‘, 0 (G 2)— AR dz,—> 0 SY (z,) cot S (2,—2) dz, (B6)

as N— o,

When equations (B4), (B5), and (B6) are substituted into
equation (B1), the expression for the complex velocity is
obtained:

1 ’ ’ 1 /
(@)=5 (o' +u) 55 [, G (2 ot § () de (BT

The complex potential is obtained from equation (B7) by
integrating with respect to z and neglecting the arbitrary
constant,

w(z):zw,,,’-l—ziﬂ fBo w'(z,) log sin %r, (z2—z,) dz, (B8)
w +wy’
2

where w,,’= is the mean stream velocity.
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APPENDIX C

SYMBOLS
The principal symbols used throughout the report are | A angle of inclination of mean flow to normal to cascade
listed here for convenience of reference. axis (fig. 1)
1 N @ velocity potential on airfoil, R{w(z)]
h= 4r log [(x—xu)2+(y—yo)-:| ¢4, o, values of ¢ at points A, B,’O, D, respectively, where
_ 1 s, T Y ve,op  curve of ¢(s,) intersects f5(s, s,)=0 (See fig. 5.)
fo= g log | sin® g (@ —uxo) +-sink?® g (y—y")] @e velocity potential on circlizr corresponding to solated
K natural logarithm of distance from singular peint to airfoil I.
center of circle corresponding to cascade airfoil ¢.,c  velocity potential on circle corresponding to airfoil in
l total arc length of airfoil cascade
S distance between successive airfoils in cascade emin  velocity potential at leading edge of airfoil
s arc-length parameter corresponding to z Y stream function, Ifw(z)]
S, arc-length parameter corresponding to z, Ym stream function of mean stream of cascade flow
14 magnitude of uniform or mean stream velocity in air- Yu stream function of uniform stream flowing about
foil or cascade plane (fig. 1) isolated airfoil
V., magnitude of uniform stream velocity in circle plane | ¥ mean value of stream function over airfoil
V. z-coraponent of uniform or mean stream velocity ~ Ay variation of stream function, ¢— ¢
V.. resultant local mean stream z-component of velocity V" | Subscripts 1 and 2 when appended to w’, V, and 17, 1nd1cate
V, y-component of uniform or mean stream velocity 17 inflow and discharge values, respectlvely.
e local velocity on circle corresponding to isolated
airfoil ' REFERENCES

v,. local velocity on circle corresponding to airfoil in .
1. Mutterperl, William: The Conformal Transformation of an Airfoil

cas'cad.e . . . into a Straight Line and Its Application to the Inverse Problem
Ny velocity induced by vortices in region f,>>0 of Airfoil Theory. NACA ARR No. L4K22a, 1944,
w complex potential function, o-+iy 2. Theodorsen, Theodore: Airfoil-Contour Modifications Based on
w,,,’ complex Velocity of mean stream for airfoil in cascade e-Curve Method of Calculating Pressure Distribution. NACA
ARR No. L4G05, 1944,
[ (’wl,+w2 )— “ZV] 3. Mutterperl, William: A Solution of the Direet and Inverse Poten-
’ . tial Problems for Arbitrary Cascades of Airfoils. NACA ARR
Wy complex Veloc1ty of uniform stream for isolated airfoil, No. L4K22b, 1044
Ve—1l, 4. Ackeret, J.: The Design of Closely Spaced Blade Grids. British
z real part of z R. T. P. Trans. No. 2007, Ministry Aircraft Prod. (From

Schweiz. Bauzeitung, vol. 120, no. 9, Aug. 29, 1942, pp. 103-108.)
5. von Mises, Richard, and Friedrichs, Kurt O.: Fluid Dynamics,
Advance Instruction and Research in Mechanies, ch. III.

z.,y. coordinates of point about which airfoil is rotated
(centroid of vortex distribution for cascade airfoils)

Y 1maglpary part O{f z . . Brown Univ., Summer, 1941, pp. 96-97.
& coordinate Oi: point where stream function is com- 6. Stodola, A.: Steam and Gas Turbines, vol. II. McGraw-Hill
puted, z+4-1y Book Co., Inec., 1927, pp. 992-994. (Reprinted, Peter Smith A
2z, coordinate of point where vortex is located, z,+17y, (New York), 1945.) “ad
angle of inclination of uniform stream velocity to 7. von Kérmé4n, Th.: Compressibility Effects in Aerodynamies.
z-axis Jour. Aero. Sei., vol. 8, no. 9, July 1941, pp. 337-356.
B angle through which airfoil is rotated 8. Garrick, I. E., and Kaplan, Carl: On the Flow of a Compressible

Fluid by the Hodograph Method. I—Unification and Extension
of Present-Day Results. NACA Rep. No. 789, 1944.

9. Theodorsen, T., and Garrick, I. E.: General Potential Theory of

T circulation about airfoil
v(z,) vortex strength per unit arc length at z,

6 central angle of circle _ . Arbitrary Wing Sections. NACA Rep. No. 452, 1933.

On angle f)f Stagnatlon‘ pO}Ilt on circle corresponding to 10. Garrick, I. E.: On the Plane Potential Flow past a Symmetrical
leading edge of airfoil Lattice of Arbitrary Airfoils. NACA Rep. No. 788, 1944.

97 angle of stagnation point on circle corresponding to 11. Gebelein, H : Theory of Two-Dimensional Potential Flow about
trailing edge of airfoil ) Arbitrary Wing Sections. NACA TN No. 886, 1939.
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TABLE 1. COORDINATES OT fo(x—zx,. y—Yo)
(a) Values of (y—y.)/S

\\‘ I—Lo
S
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
2 \\
—0.40 0.0257
—.38 . 0292
—.36 .0331
—.34 .0375
—.32 10425
—0.30 0.0481
—.28 .0545 0.0229
—.26 .0618 0371
—.24 0699 0497
—.22 .0791 . 0621
—0.20 0.0894 0. 0750
—.18 .1010 .0887 0.0296
—.16 1140 .1035 - 0620
—14 1286 1195 .0871
—.12 1447 1369 1107 0.0392 .
—0.10 0.1626 0. 1560 0.1344 0.0881
—.08 L1824 1768 1588 1241 0. 0454
—.06 .2041 1993 1844 1572 1103 ‘
—.04 L2277 2236 2113 L1896 1558 0.1014 i
—.02 . 2532 2498 2396 2222 1966 .1608 0.1096 )
0. 2805 0.2778 0. 2694 0. 2553 0.2354 0. 2096 0.1777 0. 1400 0.0969 0.0496 0. 0000
.02 . 3097 .3074 3006 2892 2737 2542 2318 . 2081 1692 21629
.04 3405 3386 3331 .3239 3117 2968 2804 2638 2389 12352
.06 13728 L3713 3668 3595 3408 . 3384 3260 3139 2965 12940
.08 L4064 4052 . 4016 3958 .3881 3793 3698 3608 3482 3464 |
0.10 0. 4412 0. 4402 0.4373 0. 4327 0.4267 0.4198 0.4126 0.4058 0. 0.3964 0.3951
12 . 4769 4761 4739 4702 . 4655 4601 4545 4493 . 4423 14413
14 5135 5120 L5111 5082 5045 5003 . 4960 . 4920 4867 -4859
.16 5508 5503 .5488 5466 5437 5404 - 5371 5340 5299 . 5204
.18 . 5886 5882 L5871 5853 5830 5805 L5779 5735 5724 - 5720
0.20 0. 6269 0. 6266 0. 6257 0.6243 0.6225 0. 6205 0.6185 0. 6167 0. 0.6143 0.6140
22 L6655 L6653 L6646 6635 6621 - 6606 6590 6576 .6 6557 L6555
24 17044 -7042 7037 7029 .7018 ~7006 6994 083 6968 - 6966
126 L7436 7434 7430 7424 17415 7406 7396 7588 7377 L7375
.28 L7829 7828 7825 . 7820 L7813 7806 7798 7792 7783 (7782 |
0.30 0.8224 0.8223 0.8221 0.8217 0.8211 0. 8206 0. 8200 0.8195 0. 0.8188 0.8187
.32 . 8620 .8619 8617 8614 L8610 - 8606 . 8601 8507 . 8592 . 8592
.34 19017 .9016 9015 9012 -9009 - 9006 9002 8999 . 8¢ 8995 .80995
.36 .9415 . 9414 9413 9411 -9409 9406 .9403 . 9401 ¢ 9398 9397
.38 9813 9812 9811 9810 9808 9806 - 9804 . 0802 ¢ 9800 9799
0.40 1.0211 1,0211 1.0210 1.0209 1. 0207 1. 0206 1.0204 1.0203 1.0201 1.0201 1.0201
L42 1.0610 1. 0610 1. 0609 1. 0608 1. 0607 1. 0606 1. 0604 1. 0603 1. 0602 1. 0602 1.0602
L44 1. 1009 1. 1009 1. 1008 1. 1008 1. 1007 1.1006 1. 1005 1. 1004 1. 1003 1. 1003 1.1003
.46 1. 1408 1.1408 1. 1408 1.1407 1. 1407 1. 1406 1. 1405 1. 1404 1. 1404 1.1403 1.1403
.48 1.1808 1. 1807 1. 1807 1.1807 1.1806 1.1806 1.1805 1.1805 1.1804 1. 1804 1. 1804
0.50 1. 2207 1. 2207 1.2207 1. 2206 1. 2206 1. 2206 1. 2205 1.2205 1. 2204 1 2204 12204
52 1. 2607 1. 2607 1. 2607 1. 2606 1. 2606 1. 2606 1. 2605 1. 2605 1. 2605 1. 2605 1.2605 |
.54 1. 3007 1. 3006 1. 3006 1. 3006 1. 3006 1. 3006 1.3005 1. 3005 1. 3005 1. 3005 1. 3005
L56 1. 3406 1. 3406 1. 3406 1.3406 1. 3406 1. 3406 1. 3405 1. 3405 1. 3405 1. 3405 1. 3405
.58 1. 3806 1. 3806 1. 3806 1. 3806 1. 8806 1. 3806 1.3805 1. 3805 1.3805 1.3805 1.3805
0. 60 1.4206 1. 4206 1. 4206 1. 4206 1. 4206 1. 4206 1.4205 1. 4205 1. 4205 1. 4205 1.4205
.62 1. 4606 1. 4606 1. 4606 £ 4606 1. 4606 1. 4606 1. 4605 1. 4605 1. 4605 1. 4605 1. 4605
64 1. 5006 1. 5006 1. 5006 1. 5006 1. 5006 1. 5006 1. 5005 1. 5005 1. 5005 1. 5005 1. 5005
.66 1. 5406 1. 5406 1. 5406 1. 5406 1. 5406 1. 5406 1. 5406 1. 5405 1. 5405 1. 5405 1. 5405
.68 1. 5806 1. 5806 1. 5806 1. 5806 1. 5806 1. 5806 1. 5806 1. 5805 1. 5805 1. 5805 1. 5805
0.70 1. 6206 1. 6206 1. 6206 1. 6206 1. 6206 1.6206 1.6206 1.6205 1. 6205 l 1.6205 1.6205
|
TABLE I. COORDINATES OF fi(z—=x,, y—yo.)—Concluded
(b) Values of (z—z,)/S
\\ Y=o
AN S
N— 0 0.025 0,050 0.075 0.100 0.125 0.150 0.175 0. 200 0.225 0.250
I \.
.
AN J— — _ S
—0.40 0.0258 0. 0060 !
—.38 -0293 0151
—136 0332 .0217
—.34 .0377 L0281
—.32 0428 10346
—0.30 0.0485 0.0414
—.28 - 0551 . 0489 0.0219
—.26 . 0625 L0572 -0367
—. 2 L0710 0663 0496
—.22 .0808 0766 0625 0.0256
—0.20 0.0918 0.0882 0.0761 0. 0500
—.18 -1046 L1013 - 0908 0700 0.0148
—.16 1192 1163 .1071 . 0897 0571
— 14 1362 1336 L1254 1105 .0854 0.0317
—12 1559 1535 1462 1330 1123 L0782
—0.10 0.1791 0.1769 0.1702 0.1585 0.1405 0.1137 0.0685
—.08 .2068 . 2047 L1985 1877 177 . 1490 L1160 0.0572
—.06 . 2406 L2386 . 232 2225 . 2076 .1873 -1598 1204 0.0463
—.04 . 2837 L2816 L2756 2654 - 2509 L2317 . 2068 1743 . 1200 0. 0408
—.02 .3437 3414 3344 .3229 .3072 .2871 L2624 L2321 L1942 . 1432 0. 0487
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V'’ Inflow velocity i
V.  Slipstream velocity -

1 hp=76.04 kg-m/s=550 ft-Ib/sec -
1 metric horsepower=0.9863 hp

1 mph=0.4470 mps

1 mps=2.2369 mph

" 5. NUMERICAL RELATIONS

Eogitive directions of axes and al}gles (forces and moments) are shown by arrows ~
- Axis _ - Moment a.l_{@ut axis Angle X : " Velocities.
- " Force - -
ST - . gpara!lt;,l S : : .. | - Linear ’
- 0.axis - 2 st ¢ om-| | - ’
Desiguation | S | iymbel | Designation [ Sg23- |  Eosive | Destgna- | Sym, (compo- | Angulne|
. o : ) - : axis) |-
. Longitudinal_.._..__ x| x |Roming| L | ¥z |Ral.| ¢ | u | »
Lateral ..o Y Y ° | Pitehing._ ... | M. Z—X Pitch._.... e v q
Normal ... el 2 Z ‘Yawing......| N | X—Y | Yaw. e} ¥ v r
. Absdlli“téjcoéﬂicient’s of moment Angle of set of control surface (rélative to neutral
-y L K N * position), 5. (Indicate surface by proper subscript.)
: 01=— . 0m=—. 0n=—-——. : - - : B : .
- 7 gbS ™ qeS *TgbS I
(rolling) (pitchimg) (yawing) , , ,
R : " 4 PROPELLER SYMBOLS = -
D - Diameter I - : o . P
» Geotnetric pitch: P -. Power, gbsolute cogﬂic;e[lt Op—pn3D5
~p/D-  Piteh ratio . -

: o ' . 8oV
C, Speed-power coefficient= ‘/ P

T , . g Efficiency A )
- T . Thrust, absolute coefficient Or=—3%7; n -Revolutions per second, rps .
| o e " Effective helix angle=tan—(50) o
. L : ti ix angle=tan~ (————-) S
Q  Torque, absolute coefficient 0°=pn’D‘ A‘I) o ec.lve elix ang 2xrn,

11b=0.4536 kg
1 kg=2.2046 I~

1 mi=1,609.35 m=>5,280 fb )
1 m=3.2808 ft - , -




